1. 题目
题意:给你一颗树,问你有多少条路径长度为素数。
点数 $\leq 50000$
2. 题解
emmmm…
路径条数显然点分治
然后对于每个点 $p$弄个向量,向量的维度是 $p$的子树大小,向量的第 $i$维的值等于 $p$的子树中到 $p$的深度为 $i$的点的数目。设该向量为 $a$
那么拿 $a$自乘一波,得到的向量 $a^2$的第 $i$维的值就是经过 $p$的长度为 $i$的路径条数了。
但是这样子可能会出现某路径两端均在 $p$的某个儿子的子树内,这种情况是不合法的,需要减掉。那么对于 $p$的某个儿子节点 $x$设向量 $b$,$b$的第 $i$维表示 $x$的子树中到 $p$的深度为 $i$的点的数目,拿 $b$自乘得到 $b^2$,那么 $b^2$就是不合法的方案数了,减掉即可。
至于所谓的素数,暴力 $O(n\sqrt n)$找素数即可。
代码:
#include <bits/stdc++.h>
#define NS (50005)
#define PI (3.14159265358979323846)
using namespace std;
typedef complex<double> cpx;
typedef long long LL;
template<typename _Tp> inline void IN(_Tp& dig)
{
char c; bool flag = 0; dig = 0;
while (c = getchar(), !isdigit(c)) if (c == '-') flag = 1;
while (isdigit(c)) dig = dig * 10 + c - '0', c = getchar();
if (flag) dig = -dig;
}
struct graph
{
int head[NS], nxt[NS << 1], to[NS << 1], sz;
void init() {memset(head, -1, sizeof(head)), sz = 0;}
graph() {init();}
void push(int a, int b)
{
nxt[sz] = head[a], to[sz] = b, head[a] = sz++;
}
int operator [] (const int a) const {return to[a];}
} g;
int n, rev[NS * 3];
LL num[NS * 3];
int root, rmx, sz[NS], sum, dep[NS];
bool book[NS];
cpx poly[NS * 3];
void Get_Rev(int N, int bs)
{
for (int i = 1; i < N; i += 1)
rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bs - 1));
}
void DFT(cpx* a, int N, int f)
{
for (int i = 0; i < N; i += 1) if (i < rev[i]) swap(a[i], a[rev[i]]);
for (int l = 1; l < N; l <<= 1)
{
cpx w1(cos(PI / l), sin(PI / l) * f);
for (int i = 0; i < N; i += (l << 1))
{
cpx w(1, 0), t1, t2;
for (int j = i; j < i + l; j += 1, w *= w1)
t1 = a[j], t2 = w * a[j + l], a[j] = t1 + t2, a[j + l] = t1 - t2;
}
}
if (f == -1) for (int i = 0; i < N; i += 1) a[i] /= N;
}
void SzDfs(int a, int fa)
{
sz[a] = 1;
for (int i = g.head[a]; ~i; i = g.nxt[i])
if (g[i] != fa && !book[g[i]])
SzDfs(g[i], a), sz[a] += sz[g[i]];
}
void GetRoot(int a, int fa)
{
int mx = sum - sz[a];
for (int i = g.head[a]; ~i; i = g.nxt[i])
if (g[i] != fa && !book[g[i]])
mx = max(mx, sz[g[i]]), GetRoot(g[i], a);
if (mx < rmx) rmx = mx, root = a;
}
void DepDfs(int a, int fa)
{
dep[a] = dep[fa] + 1;;
poly[dep[a]].real(poly[dep[a]].real() + 1);
for (int i = g.head[a]; ~i; i = g.nxt[i])
if (!book[g[i]] && g[i] != fa)
DepDfs(g[i], a);
}
void Binary()
{
int a = root; book[a] = 1;
int N = 1, bs = 0;
while (N < (sum << 1)) N <<= 1, bs++;
for (int i = 0; i < N; i += 1) poly[i] = cpx(0, 0);
Get_Rev(N, bs), DepDfs(a, 0), DFT(poly, N, 1);
for (int i = 0; i < N; i += 1) poly[i] *= poly[i];
DFT(poly, N, -1);
for (int i = 0; i < N; i += 1) num[i] += (LL)(poly[i].real() + 0.5);
SzDfs(a, 0);
for (int i = g.head[a]; ~i; i = g.nxt[i])
if (!book[g[i]])
{
N = 1, bs = 0;
while (N <= (sz[g[i]] << 1)) N <<= 1, bs++;
for (int i = 0; i < N; i += 1) poly[i] = cpx(0, 0);
Get_Rev(N, bs), DepDfs(g[i], a);
DFT(poly, N, 1);
for (int i = 0; i < N; i += 1) poly[i] *= poly[i];
DFT(poly, N, -1);
for (int i = 0; i < N; i += 1) num[i] -= (LL)(poly[i].real() + 0.5);
}
for (int i = g.head[a]; ~i; i = g.nxt[i])
if (!book[g[i]])
sum = sz[g[i]], rmx = INT_MAX, GetRoot(g[i], a), Binary();
}
bool Jud(int a)
{
for (int i = 2; i * i <= a; i += 1)
if (a % i == 0) return 0;
return 1;
}
int main(int argc, char const* argv[])
{
IN(n), dep[0] = -1;
for (int i = 1, a, b; i < n; i += 1)
IN(a), IN(b), g.push(a, b), g.push(b, a);
SzDfs(1, 0), sum = sz[1], rmx = INT_MAX, GetRoot(1, 0);
Binary(); double ans = 0;
for (int i = 2; i <= n; i += 1)
if (Jud(i)) ans += num[i] >> 1;
printf("%.7f\n", ans / (0.5 * n * (n - 1)));
return 0;
}
0 条评论