前言

orz 一下这位大神

本文献给想要性感地理解支配树的同学,如果你想更性感一点,所有证明均可跳过。

litble 特别菜,有错误请指出,谢谢。

支配点

很久很久以前,有一张有向图,有向图有一个起点 S,有一个叫小 X 的强盗,占据一个点拦路打劫。当小 X 占据了 x点后,若从 S出发就到不了 y点了,那么 x就是 y的支配点。

而支配树,就是满足树上一个点 x的所有祖先都是它的支配点的树。

How to build 支配树

以下我们假定从 S出发可以到达图上所有点。

树形图

显然,树形图自己就是自己的支配树。

DAG

DAG 的话,我们按照拓扑序从小到大进行,假设处理到点 x,则查一遍所有可达点 x的点 y,所有点 y一定被加入了支配树中,那么它们在支配树上的 LCA 就是 x在支配树上的父亲。

倍增就可以做到 O(nlogn),例题洛谷 P2597,代码如下:

#include<bits/stdc++.h>
using namespace std;
#define RI register int
int read() {
    int q=0;char ch=' ';
    while(ch<'0'||ch>'9') ch=getchar();
    while(ch>='0'&&ch<='9') q=q*10+ch-'0',ch=getchar();
    return q;
}
const int N=65540;
int n,top,js;
int f[N][16],du[N],p[N],st[N],ans[N],dep[N];
vector<int> g[N],rg[N],tr[N];
void topsort() {
    for(RI i=1;i<=n;++i)
        if(!du[i]) g[0].push_back(i),rg[i].push_back(0),++du[i];
    top=1,st[top]=0;
    while(top) {
        int x=st[top];p[++js]=x,--top;
        for(RI i=0;i<g[x].size();++i) {
            --du[g[x][i]];
            if(!du[g[x][i]]) st[++top]=g[x][i];
        }
    }
}
int lca(int x,int y) {
    if(dep[x]<dep[y]) swap(x,y);
    for(RI i=15;i>=0;--i) if(dep[f[x][i]]>=dep[y]) x=f[x][i];
    if(x==y) return x;
    for(RI i=15;i>=0;--i) if(f[x][i]!=f[y][i]) x=f[x][i],y=f[y][i];
    return f[x][0];
}
void dfs(int x) {
    ans[x]=1;
    for(RI i=0;i<tr[x].size();++i)
        dfs(tr[x][i]),ans[x]+=ans[tr[x][i]];
}
int main()
{
    n=read();
    for(RI i=1;i<=n;++i) {
        int x=read();
        while(x) g[x].push_back(i),rg[i].push_back(x),++du[i],x=read();
    }
    topsort();
    for(RI i=2;i<=n+1;++i) {
        int x=p[i],y=rg[x][0];
        for(RI j=1;j<rg[x].size();++j) y=lca(y,rg[x][j]);
        tr[y].push_back(x),dep[x]=dep[y]+1,f[x][0]=y;
        for(RI j=1;j<=15;++j) f[x][j]=f[f[x][j-1]][j-1];
    }
    dfs(0);
    for(RI i=1;i<=n;++i) printf("%d\n",ans[i]-1);
    return 0;
}
C++

一般有向图

一般有向图有一个优秀的做法叫做 Lengauer Tarjan,对,又是 Tarjan,Tarjan tql。

首先,我们从 S开始 dfs 整张图,可以提取出一棵 dfs 树,并且 x的 dfs 序是 dfn(x)

半支配点

假设存在一个点 y,从 y出发有一条到 x的路径,并且路径上任何一点 z(不包括 xy)都满足 dfn(z)>dfn(x),则称 yx半支配点

semi(x)x的 dfn 最小的半支配点,因为 x在 dfs 树上的父亲也是它的一个半支配点,所以 semi(x)一定是 x的祖先。

我们为什么需要这个 semi呢?因为我们删掉原图中的非树边后,连边 (semi(x),x),不改变原图中的支配点关系。性感的证明如下:

  1. 假如在原图上删掉 yx就不可达了,那么显然 yx在 dfs 树上的祖先。
  2. 假若从 y的某个祖先出发,可以在不经过 y的情况下,走到一个 dfn(y)<dfn(z)dfn(x)的点 zy就是 x的支配点,反之不是。
  3. 因为不能经过 y,所以从这个祖先走到 z的路径上经过的所有点的 dfn应该大于 y
  4. 假如这条路径上的所有点的 dfn都大于 z,则显然通过 (semi(z),z)可以保证新图上这个点依然能到 z。否则,这条路径要么经过一个 dfn小于等于 x大于 y的点(直接满足条件),要么全部经过 dfn大于 x的点(也就是 x的半支配点)
  5. 所以,新图中的支配点关系与原图相同。

如果求出了 semi,我们就把原图变成了一个 DAG,然后就可以重复 DAG 的做法啦。不过更优的做法也是有的。

求半支配点

对于一个点 x,我们找到所有边 (y,x)对应的 y

dfn(y)<dfn(x)dfn(y)比当前找到的 semi(x)dfn小,则用 semi(x)=y

dfn(y)>dfn(x),找到树上 y的一个祖先 z,且 dfn(z)>dfn(x),比较 dfn(semi(z))dfn(semi(x))的大小,决定是否用 semi(z)更新 semi(x)

性感的证明就是:

  1. 考虑从 semi(x)x的那条只经过 dfn大于 x的点的路径上,x的前驱。若这个前驱是一个 dfn小于 x的点,那么只有可能从这个点出发是满足条件的。
  2. 否则,这条路径上可能经过 dfn小于 y且大于 x的点(因为已经证明原图缩成 DAG 合法,所以不可能从 dfn大于 y的点走过来啦 QvQ),枚举这些点 z,它们的 semi就是满足条件的 semi

从半支配点到支配点

对于 x,我们要求它在支配树上的父亲,也就是 idom(x)

寻找方法如下:

我们记 P为从 semi(x)x的树上路径点集(不包括 semi(x)),而 zPdfn(semi(z))最小的点。semi(z)=semi(x),则有 idom(x)=semi(x),否则有 idom(x)=idom(z)

对于前半句性感的证明就是,没有 semi(x)的祖先连到 P中的边,则删去 semi(x)x就不可达。

对于后半句性感的证明(见下图)就是:

  1. 假设删掉 idom(z)x依旧可达,则说明在 dfs 树上,idom(z)有一个祖先,可以走一条非树边(也就是通过 semi 连出来的边,图中红边)到达 xidom(z)中间的一个点 k
  2. z不是 k的祖先,则删掉 idom(z)z仍可达,与支配点定义不符,所以 zk的祖先。
  3. 那么因为 zP(我希望你还记得 P的定义),所以 kP。因为删除 idom(z)semi(z)不可达,所以 dfn(semi(k))dfn(idom(z))dfn(semi(z)),与我之前定义的 “zPdfn(semi(z))最小的点” 矛盾,所以该假设不可能成立。

灵魂画手litble

算法流程

那么具体怎么实现呢?其实很简单——用带权并查集!

首先安装 dfs 序从大到小处理,每次处理完毕一个点后,将这个点与它 dfs 树上的父亲在并查集连边。而并查集带的权,就是并查集中这个点到根节点的路径上的所有点,dfn(semi(x))最小的 x是哪个。

semi直接找即可,找 idom则在 semi(x)处处理 x的信息即可。

(Tarjan 大神很喜欢 dfs 树和并查集啊)

例题:HDU4694(起点为 n,求每个点支配的点的编号和)
Wraning: 数据出错,对于 n无法到的点,答案为 0,并且清空边集的时候,与 0 相连的边集也要清空(MDZZ 调了劳资一下午)

#include<bits/stdc++.h>
using namespace std;
#define RI register int
int read() {
    int q=0;char ch=' ';
    while(ch<'0'||ch>'9') ch=getchar();
    while(ch>='0'&&ch<='9') q=q*10+ch-'0',ch=getchar();
    return q;
}
typedef long long LL;
const int N=50005,M=100005;
int n,m,tim;
int dfn[N],repos[N],mi[N],fa[N],f[N],semi[N],idom[N],ans[N];
struct graph{
    int tot,h[N],ne[M],to[M];
    void clear() {tot=0;for(RI i=0;i<=n;++i) h[i]=0;}//此题数据有误所以应从 i=0 开始清空
    void add(int x,int y) {to[++tot]=y,ne[tot]=h[x],h[x]=tot;}
}g,rg,ng,tr;

void init() {
    tim=0;g.clear(),rg.clear(),ng.clear(),tr.clear();
    for(RI i=1;i<=n;++i)
        repos[i]=dfn[i]=idom[i]=fa[i]=ans[i]=0,mi[i]=semi[i]=f[i]=i;
}
void tarjan(int x) {
    dfn[x]=++tim,repos[tim]=x;
    for(RI i=g.h[x];i;i=g.ne[i])
        if(!dfn[g.to[i]]) fa[g.to[i]]=x,tarjan(g.to[i]);
}
int find(int x) {
    if(x==f[x]) return x;
    int tmp=f[x];f[x]=find(f[x]);
    if(dfn[semi[mi[tmp]]]<dfn[semi[mi[x]]]) mi[x]=mi[tmp];
    return f[x];
}
void dfs(int x,LL num) {
    ans[x]=num+x;
    for(RI i=tr.h[x];i;i=tr.ne[i]) dfs(tr.to[i],num+x);
}
void work() {
    for(RI i=n;i>=2;--i) {
        int x=repos[i],tmp=n;
        for(RI j=rg.h[x];j;j=rg.ne[j]) {
            if(!dfn[rg.to[j]]) continue;//此题数据有误
            if(dfn[rg.to[j]]<dfn[x]) tmp=min(tmp,dfn[rg.to[j]]);
            else find(rg.to[j]),tmp=min(tmp,dfn[semi[mi[rg.to[j]]]]);
        }
        semi[x]=repos[tmp],f[x]=fa[x],ng.add(semi[x],x);

        x=repos[i-1];
        for(RI j=ng.h[x];j;j=ng.ne[j]) {
            int y=ng.to[j];find(y);
            if(semi[mi[y]]==semi[y]) idom[y]=semi[y];
            else idom[y]=mi[y];//此时 idom[mi[y]] 可能并未找到
        }
    }
    for(RI i=2;i<=n;++i) {
        int x=repos[i];
        if(idom[x]!=semi[x]) idom[x]=idom[idom[x]];
        tr.add(idom[x],x);
    }
    dfs(n,0);
}
int main()
{
    int x,y;
    while(~scanf("%d%d",&n,&m)) {
        init();
        for(RI i=1;i<=m;++i)
            x=read(),y=read(),g.add(x,y),rg.add(y,x);
        tarjan(n);work();
        for(RI i=1;i<n;++i) printf("%d ",ans[i]);
        printf("%d\n",ans[n]);
    }
    return 0;
}
C++
分类: 文章

litble

苟...苟活者在淡红的血色中,会依稀看见微茫的希望

5 条评论

孤月 · 2020年6月14日 4:58 下午

2020 年蒟蒻前来% 神仙,非常感谢这篇 blog。

XZYQvQ · 2018年10月13日 11:01 上午

性感 KB,在线支配,给您不一样的被吊打体验

B_Z_B_Y · 2018年10月13日 8:22 上午

233333333333

boshi · 2018年10月12日 8:59 下午

第三句话存在严重错误,请稍加斟酌

    litble · 2018年10月12日 9:26 下午

    第三句话是

    本文献给想要性感地理解支配树的同学,如果你想更性感一点,所有证明均可跳过。

    怎么了?你觉得你自己不够性感?

回复 litble 取消回复

Avatar placeholder

您的邮箱地址不会被公开。 必填项已用 * 标注